
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>We provide a rationale for and describe examples of synthetic modeling and simulation (M&S) of biological systems. We explain how synthetic methods are distinct from familiar inductive methods. Synthetic M&S is a means to better understand the mechanisms that generate normal and disease-related phenomena observed in research, and how compounds of interest interact with them to alter phenomena. An objective is to build better, working hypotheses of plausible mechanisms. A synthetic model is an extant hypothesis: execution produces an observable mechanism and phenomena. Mobile objects representing compounds carry information enabling components to distinguish between them and react accordingly when different compounds are studied simultaneously. We argue that the familiar inductive approaches contribute to the general inefficiencies being experienced by pharmaceutical R&D, and that use of synthetic approaches accelerates and improves R&D decision-making and thus the drug development process. A reason is that synthetic models encourage and facilitate abductive scientific reasoning, a primary means of knowledge creation and creative cognition. When synthetic models are executed, we observe different aspects of knowledge in action from different perspectives. These models can be tuned to reflect differences in experimental conditions and individuals, making translational research more concrete while moving us closer to personalized medicine.
Biomedical Engineering, Pharmaceutical Science, Pharmacy, Medical Law, Biochemistry, Models, Biological, Biomimetics, Animals, Humans, Technology, Pharmaceutical, agent-based, Pharmacology (medical), Computer Simulation, Pharmacology/Toxicology, Pharmacology, mechanistic, predict, Organic Chemistry, modeling, simulation, Biomedicine, Biochemistry, general, general, Molecular Medicine, Expert Review, Biotechnology
Biomedical Engineering, Pharmaceutical Science, Pharmacy, Medical Law, Biochemistry, Models, Biological, Biomimetics, Animals, Humans, Technology, Pharmaceutical, agent-based, Pharmacology (medical), Computer Simulation, Pharmacology/Toxicology, Pharmacology, mechanistic, predict, Organic Chemistry, modeling, simulation, Biomedicine, Biochemistry, general, general, Molecular Medicine, Expert Review, Biotechnology
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 64 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
