
arXiv: 2502.12909
This paper analyzes the SParareal algorithm for stochastic differential equations (SDEs). Compared to the classical Parareal algorithm, the SParareal algorithm accelerates convergence by introducing stochastic perturbations, achieving linear convergence over unbounded time intervals. We first revisit the classical Parareal algorithm and stochastic Parareal algorithm. Then we investigate mean-square stability of the SParareal algorithm based on the stochastic $θ$-method for SDEs, deriving linear error bounds under four sampling rules. Numerical experiments demonstrate the superiority of the SParareal algorithm in solving both linear and nonlinear SDEs, reducing the number of iterations required compared to the classical Parareal algorithm.
FOS: Mathematics, Mathematics - Numerical Analysis, Numerical Analysis (math.NA)
FOS: Mathematics, Mathematics - Numerical Analysis, Numerical Analysis (math.NA)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
