
arXiv: 0906.5442
We introduce and describe our newly developed code that simulates light curves and radial velocity curves for arbitrary transiting exoplanets with a satellite. The most important feature of the program is the calculation of radial velocity curves and the Rossiter-McLaughlin effect in such systems. We discuss the possibilities for detecting the exomoons taking the abilities of Extremely Large Telescopes into account. We show that satellites may be detected also by their RM effect in the future, probably using less accurate measurements than promised by the current instrumental developments. Thus, RM effect will be an important observational tool in the exploration of exomoons.
5 pages, 2 figures with 9 figure panels, accepted by EM&P
Earth and Planetary Astrophysics (astro-ph.EP), FOS: Physical sciences, Astrophysics - Earth and Planetary Astrophysics
Earth and Planetary Astrophysics (astro-ph.EP), FOS: Physical sciences, Astrophysics - Earth and Planetary Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
