Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Machine Learning
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Machine Learning
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2021
Data sources: zbMATH Open
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

Learning hierarchical probabilistic logic programs

Authors: Nguembang Fadja A.; Riguzzi F.; Lamma E.;

Learning hierarchical probabilistic logic programs

Abstract

AbstractProbabilistic logic programming (PLP) combines logic programs and probabilities. Due to its expressiveness and simplicity, it has been considered as a powerful tool for learning and reasoning in relational domains characterized by uncertainty. Still, learning the parameter and the structure of general PLP is computationally expensive due to the inference cost. We have recently proposed a restriction of the general PLP language called hierarchical PLP (HPLP) in which clauses and predicates are hierarchically organized. HPLPs can be converted into arithmetic circuits or deep neural networks and inference is much cheaper than for general PLP. In this paper we present algorithms for learning both the parameters and the structure of HPLPs from data. We first present an algorithm, called parameter learning for hierarchical probabilistic logic programs (PHIL) which performs parameter estimation of HPLPs using gradient descent and expectation maximization. We also propose structure learning of hierarchical probabilistic logic programming (SLEAHP), that learns both the structure and the parameters of HPLPs from data. Experiments were performed comparing PHIL and SLEAHP with PLP and Markov Logic Networks state-of-the art systems for parameter and structure learning respectively. PHIL was compared with EMBLEM, ProbLog2 and Tuffy and SLEAHP with SLIPCOVER, PROBFOIL+, MLB-BC, MLN-BT and RDN-B. The experiments on five well known datasets show that our algorithms achieve similar and often better accuracies but in a shorter time.

Country
Italy
Related Organizations
Keywords

Arithmetic circuits; Back-propagation; Distribution semantics; Gradient descent; Probabilistic logic programming, arithmetic circuits, Learning and adaptive systems in artificial intelligence, probabilistic logic programming, Logic programming, back-propagation, gradient descent, distribution semantics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Average
Green
hybrid