Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Thermal A...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Thermal Analysis and Calorimetry
Article . 2013 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Heat affected zones in polymer laser marking

Authors: Sorin Vasile Savu; Nicusor Alin Sirbu; Ionel Danut Savu;

Heat affected zones in polymer laser marking

Abstract

Laser marking is based on the laser heating of the subjected material, the heating being below the melting temperature or thermal degradation starting point. Within and nearby the mark, the material is chemically, physically and mechanically affected. This means that the main characteristics are changing in such a way that the material is ageing. Thermal and mechanical analysis can be used to determine the modification of the material, which is important and necessary to know for predicting its use lifetime. This paper investigates the physical and mechanical modification of the polymer HDPE100, when laser marking is applied. Burst stress, elongation and relaxation modulus were determined for the base material, within the heat affected zone and within the laser burned mark. Information on the crystallization rate and on the elongation viscosity is also reported. According to the results, the polyethylene has very fast crystallization and that affects the marking process if lower than appropriate maintaining during heating process is applied. It becomes stabile after 0.23 min, when it is tested at 103 °C. The elongation viscosity was analysed and values of 105 Pa s were recorded for 10 s, which is a usual time of applying pressure. The performed analysis revealed about 10 % difference between the relaxation modulus of the irradiated and non-irradiated HDPE.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!