
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 17200816
This paper presents the results of a combined experimental and computational study of contact damage in a 3 mole% yttria partially stabilized zirconia (3-YSZ) that is relevant to hip implants and dental restorations. Contact-induced loading in real applications is idealized using Hertzian contact model to explain plasticity phenomena and failure mechanisms observed under monotonic and cyclic loading. Under monotonic loading, the elastic moduli increase with increasing loading levels. Under cyclic loading, the ceramic specimens fail with progressive cone cracking. X-ray analyses reveal that stress-induced phase transformation (from tetragonal to monoclinic phases) occurs under cyclic contact loading above the critical load levels (approximately 8.5 kN). Furthermore, when the cyclic loading level (5.0 kN) is less than a critical load levels (7.5 kN) that is required to induce surface cone cracks, significant plastic damage is observed in the subsurface zone underneath the contact area. These suggest that the cyclic contact loading induce both plastic damage and tetragonalto-monoclinic phase transformation in the 3-YSZ, leading to significant degradation in long-term strength. The implications of the results are discussed for the design of zirconia femoral heads in total hip replacements and zirconia crowns in dental restoration.
Dental Stress Analysis, Models, Anatomic, Ceramics, Compressive Strength, Finite Element Analysis, Biophysics, Biocompatible Materials, Prostheses and Implants, Dental Porcelain, Biophysical Phenomena, Elasticity, X-Ray Diffraction, Materials Testing, Microscopy, Electron, Scanning, Humans, Equipment Failure, Yttrium, Stress, Mechanical, Zirconium, Mathematics
Dental Stress Analysis, Models, Anatomic, Ceramics, Compressive Strength, Finite Element Analysis, Biophysics, Biocompatible Materials, Prostheses and Implants, Dental Porcelain, Biophysical Phenomena, Elasticity, X-Ray Diffraction, Materials Testing, Microscopy, Electron, Scanning, Humans, Equipment Failure, Yttrium, Stress, Mechanical, Zirconium, Mathematics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
