
New general purpose ranking functions are discovered using genetic programming. The TREC WSJ collection was chosen as a training set. A baseline comparison function was chosen as the best of inner product, probability, cosine, and Okapi BM25. An elitist genetic algorithm with a population size 100 was run 13 times for 100 generations and the best performing algorithms chosen from these. The best learned functions, when evaluated against the best baseline function (BM25), demonstrate some significant performance differences, with improvements in mean average precision as high as 32% observed on one TREC collection not used in training. In no test is BM25 shown to significantly outperform the best learned function.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 83 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
