
Collaboration Engineering is an approach to create sustained collaboration support by designing collaborative work practices for high-value recurring tasks, and transferring those designs to practitioners to execute for themselves without ongoing support from collaboration professionals. A key assumption in this approach is that we can predictably design collaboration processes. In this paper we explore this assumption to understand whether collaboration can, in fact, be designed, and elaborate on the role of thinkLets in the engineering of collaborative work practices. ThinkLets are design patterns for collaborative interactions.
Collaboration support, INFORMATION-SYSTEMS, SATISFACTION, GROUP SUPPORT-SYSTEMS, SCIENCE, Collaboration engineering, ThinkLets, Collaboration, FACILITATION, DESIGN, Facilitation, Patterns, Collaboration process design
Collaboration support, INFORMATION-SYSTEMS, SATISFACTION, GROUP SUPPORT-SYSTEMS, SCIENCE, Collaboration engineering, ThinkLets, Collaboration, FACILITATION, DESIGN, Facilitation, Patterns, Collaboration process design
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 26 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
