Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio Istituziona...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Grid Computing
Article . 2015 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

QoS Assessment of Mobile Crowdsensing Services

Authors: DISTEFANO, SALVATORE; LONGO, FRANCESCO; SCARPA, Marco Lucio;

QoS Assessment of Mobile Crowdsensing Services

Abstract

© 2015, Springer Science+Business Media Dordrecht. The wide spreading of smart devices drives to develop distributed applications of increasing complexity, attracting efforts from both research and business communities. Recently, a new volunteer contribution paradigm based on participatory and opportunistic sensing is affirming in the Internet of Things scenario: Mobile Crowdsensing (MCS). A typical MCS application considers smart devices as contributing sensors able to produce geolocalized data about the physical environment, then collected by a remote application server for processing. The growing interest on MCS allows to think about its possible exploitation in commercial context. This calls for adequate methods able to support MCS service providers in design choices, implementing mechanisms for the quality of service (QoS) assessment while dealing with complex time-dependent phenomena and churning issues due to contributors that unpredictably join and leave the MCS system. In this paper, we propose an analytical modeling framework based on stochastic Petri nets to evaluate QoS metrics of a class of MCS services. This method requires to extend the Petri net formalism by specifying a marking dependency semantics for non-exponentially distributed transitions. The approach is then applied to an MCS application example deriving some QoS measures that can drive quantitative evaluation and characterization of the “crowd” behavior.

Related Organizations
Keywords

Crowdsensing; Marking dependency; Non-Markovian phenomena; performability; Petri nets; QoS; Computer Networks and Communications; Hardware and Architecture; Information Systems; Software, Crowdsensing, performability, QoS, Marking dependency, Petri nets, Non-Markovian phenomena, 025, 004

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!