
Sperm length is highly variable, both between and within species, but the evolutionary significance of this variation is poorly understood. Sexual selection on sperm length requires a significant additive genetic variance, but few studies have actually measured this. Here we present the first estimates of narrow sense heritability of sperm length in a social insect, the bumblebee Bombus terrestris. In spite of a balanced and straightforward rearing design of colonies, and the possibility to replicate measurements of sperm within single males nested within colonies, the analysis proved to be complex. Several appropriate statistical models were derived, each depending on different assumptions. The heritability estimates obtained ranged from h (2) = 0.197 +/- 0.091 to h (2) = 0.429 +/- 0.154. All our estimates were substantially lower than previous estimates of sperm length heritability in non-social insects and vertebrates.
Male, Analysis of Variance, Models, Genetic, Genetic Variation, Bees, Spermatozoa, Quantitative Trait, Heritable, Animals, Body Size, Female, Selection, Genetic
Male, Analysis of Variance, Models, Genetic, Genetic Variation, Bees, Spermatozoa, Quantitative Trait, Heritable, Animals, Body Size, Female, Selection, Genetic
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
