Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Geoche...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Geochemistry and Health
Article . 2015 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessing and simulating the major pathway and hydrogeochemical transport of arsenic in the Beitou–Guandu area, Taiwan

Authors: Yu-Hsiun Kao; Chen-Wing Liu; Chin-Jen Wang;

Assessing and simulating the major pathway and hydrogeochemical transport of arsenic in the Beitou–Guandu area, Taiwan

Abstract

This study involved assessing and simulating the probable major pathways (surface and subsurface flow) and hydrogeochemical transport of arsenic (As) in the Beitou-Guandu area, Taiwan. A one-dimensional (1-D) generic, reactive, chemical transport model (PHREEQC) was adopted. The calibrated model showed that As transported to the downstream Guandu plain and Tan Shui river mouth accounted for 50.7 and approximately 100 % of the As in the subsurface flow pathway, respectively, suggesting that subsurface flow constituted a major As pathway. The highest As water concentration occurred near the Beitou geothermal valley because of the low pH and high redox potential in both the surface and subsurface pathways. However, As may be scavenged by aqueous Fe(II) in a reducing environment. The As concentrations in the downstream Guandu plain and Guandu wetland decreased as the simulated time increased, resulting in the adsorption of As on the surface of Fe oxydroxides and limiting the mobility of As in the surface flow pathway. The major retardation mechanism of As mobility in the subsurface flow pathway of the Guandu plain and Guandu wetland was governed by the adsorption reactions of iron-oxide and iron-sulfide minerals. The 1-D transport model was applied to predict the evolution of As in the subsurface flow pathway from 2013 to 2020. The results indicated that the As concentrations in all cells gradually increased. The geochemical redox reactions of As in the subsurface pathway subsequently led to the oxidization of As-bearing sulfides, causing As concentrations to rise substantially in the hillside area.

Related Organizations
Keywords

Rivers, Taiwan, Models, Theoretical, Groundwater, Water Pollutants, Chemical, Arsenic, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?