Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Astrophysicsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Astrophysics
Article . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hot Dust in Ultraluminous Infrared Galaxies

Authors: E. O. Vasiliev; E. O. Vasiliev; Yu. A. Shchekinov; Yu. A. Shchekinov;

Hot Dust in Ultraluminous Infrared Galaxies

Abstract

Ultraluminous infrared galaxies with total luminosities an order of magnitude greater than that of our galaxy over wavelengths of λλ = 10-800 μm are characterized by a high mass concentration of dust. Because of this, the optical thickness of the interstellar gas is extremely high, especially in the central regions of the galaxies, ranging from 1 at millimeter wavelengths to 104 in the visible. The average temperature of the dust in them is about Td=30 K, but the variations from one galaxy to another are large, with Td=20-70 K. The main source of dust in these galaxies seems to be type II supernova bursts and the main heating source is stars. In addition, given that shock waves from supernovae are an effective mechanism for destruction of interstellar dust in our galaxy and the high optical thickness of the gas with respect to the heating radiation from the stars, this conclusion merits detailed analysis. This paper provides estimates of the dust mass balance and details of its heating in these galaxies based on the example of the ultraluminous galaxy closest to us, Arp 220. It is shown that when supernovae are dominant in the production and destruction of dust in the interstellar gas, the resultant dust mass fraction is close to the observed value for Arp 220. It is also found that the observed stellar population of this galaxy can support a high ( Td ≃ 67 K ) temperature if the dust in its central region is concentrated in small, dense (n~105 cm-3) clouds with radii of 0.003 ≲ pc. Mechanisms capable of maintaining an interstellar gas structure in this state are discussed.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!