Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Mathematics ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Mathematics and Mechanics
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gaussian process hydrodynamics

Authors: Owhadi, H.;

Gaussian process hydrodynamics

Abstract

AbstractWe present a Gaussian process (GP) approach, called Gaussian process hydrodynamics (GPH) for approximating the solution to the Euler and Navier-Stokes (NS) equations. Similar to smoothed particle hydrodynamics (SPH), GPH is a Lagrangian particle-based approach that involves the tracking of a finite number of particles transported by a flow. However, these particles do not represent mollified particles of matter but carry discrete/partial information about the continuous flow. Closure is achieved by placing a divergence-free GP prior ξ on the velocity field and conditioning it on the vorticity at the particle locations. Known physics (e.g., the Richardson cascade and velocity increment power laws) is incorporated into the GP prior by using physics-informed additive kernels. This is equivalent to expressing ξ as a sum of independent GPs ξl, which we call modes, acting at different scales (each mode ξl self-activates to represent the formation of eddies at the corresponding scales). This approach enables a quantitative analysis of the Richardson cascade through the analysis of the activation of these modes, and enables us to analyze coarse-grain turbulence statistically rather than deterministically. Because GPH is formulated by using the vorticity equations, it does not require solving a pressure equation. By enforcing incompressibility and fluid-structure boundary conditions through the selection of a kernel, GPH requires significantly fewer particles than SPH. Because GPH has a natural probabilistic interpretation, the numerical results come with uncertainty estimates, enabling their incorporation into an uncertainty quantification (UQ) pipeline and adding/removing particles (quanta of information) in an adapted manner. The proposed approach is suitable for analysis because it inherits the complexity of state-of-the-art solvers for dense kernel matrices and results in a natural definition of turbulence as information loss. Numerical experiments support the importance of selecting physics-informed kernels and illustrate the major impact of such kernels on the accuracy and stability. Because the proposed approach uses a Bayesian interpretation, it naturally enables data assimilation and predictions and estimations by mixing simulation data and experimental data.

Related Organizations
Keywords

FOS: Computer and information sciences, Applied Mathematics, Mechanical Engineering, Fluid Dynamics (physics.flu-dyn), FOS: Physical sciences, Machine Learning (stat.ML), Physics - Fluid Dynamics, Numerical Analysis (math.NA), 620, Mechanics of Materials, Statistics - Machine Learning, FOS: Mathematics, Mathematics - Numerical Analysis, 35Q30, 76D05, 60G15, 65M75, 65N75, 65N35, 47B34, 41A15, 34B15

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
hybrid