Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao GPS Solutionsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
GPS Solutions
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Design and validation of broadcast ephemeris for low Earth orbit satellites

Authors: Xin Xie; Tao Geng; Qile Zhao; Xianglin Liu; Qiang Zhang; Jingnan Liu;

Design and validation of broadcast ephemeris for low Earth orbit satellites

Abstract

Low Earth orbit (LEO) constellations have potentialities to augment global navigation satellite systems for better service performance. The prerequisite is to provide the broadcast ephemerides that meet the accuracy requirement for navigation and positioning. In this study, the Kepler ephemeris model is chosen as the basis of LEO broadcast ephemeris design for backward compatibility and simplicity. To eliminate the singularity caused by the smaller eccentricity of LEO satellites compared to MEO satellites, non-singular elements are introduced for curve fitting of parameters and then transformed to Kepler elements to assure the algorithm of ephemeris computation remains unchanged for the user. We analyze the variation characteristics of LEO orbital elements and establish suitable broadcast ephemeris models considering fit accuracy, number of parameters, fit interval, and orbital altitude. The results of the fit accuracy for different fit intervals and orbital altitudes suggest that the optimal parameter selections are $$(Crs3,Crc3)$$ , $$(Crs3,Crc3, \, \dot{a},\dot{n})$$ and $$\left( {Crs3,Crc3, \, \dot{a},\dot{n}, \, \ddot{i},\ddot{a}} \right)$$ , i.e., adding two, four or six parameters to the GPS 16-parameter ephemeris. When adding four parameters, the fit accuracy can be improved by about one order of magnitude compared to the GPS 16-parameter ephemeris model, and fit errors of less than 10 cm can be achieved with 20-min fit interval for a 400–1400 km orbital altitude. In addition, the effects of the number of parameters, fit interval, and orbit altitude on fit accuracy are discussed in detail. The validation with four LEO satellites in orbit also confirms the effectiveness of proposed models.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!