Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Digital I...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Digital Imaging
Article . 2004 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Computer-Assisted Bone Age Assessment: Graphical User Interface for Image Processing and Comparison

Authors: Fei Cao; Vincente Gilzanz; Sylwia Pospiechâ Euro Kurkowska; Arkadiusz Gertych; H. K. Huang; Ewa Pietka;

Computer-Assisted Bone Age Assessment: Graphical User Interface for Image Processing and Comparison

Abstract

The current study is part of a project resulting in a computer-assisted analysis of a hand radiograph yielding an assessment of skeletal maturity. The image analysis is based on features selected from six regions of interest. At various stages of skeletal development different image processing problems have to be addressed. At the early stage, feature extraction is based on Lee filtering followed by the random Gibbs fields and mathematical morphology. Once the fusion starts, wavelet decomposition methods are implemented. The user interface displays the closest neighbors to each image under consideration. Results show the sensitivity of different regions to both stages of development and certain feature sensitivity within each region. At the early stage of development, the distal features are more reliable indicators, whereas at the stage of epiphyseal fusion, a larger dynamic range of middle features makes them more sensitive. In the current study, a graphical user interface has been designed and implemented for testing the image processing routines and comparing the results of quantitative image analysis with the visual interpretation of extracted regions of interest. The user interface may also serve as a teaching tool. At the later stage of the project it will be used as a classification tool.

Keywords

Male, Adolescent, Infant, Newborn, Infant, Hand, Sensitivity and Specificity, Bone and Bones, Radiographic Image Enhancement, User-Computer Interface, Age Determination by Skeleton, Child, Preschool, Image Processing, Computer-Assisted, Humans, Radiographic Image Interpretation, Computer-Assisted, Female, Child

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Average
Top 10%
Top 10%
bronze