Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Knowledge and Inform...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Knowledge and Information Systems
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dropout non-negative matrix factorization

Authors: Jie Liu; Yuan Wang; Caihua Liu; Zhicheng He; Airu Yin; Yalou Huang;

Dropout non-negative matrix factorization

Abstract

Non-negative matrix factorization (NMF) has received lots of attention in research communities like document clustering, image analysis, and collaborative filtering. However, NMF-based approaches often suffer from overfitting and interdependent features which are caused by latent feature co-adaptation during the learning process. Most of the existing improved methods of NMF take advantage of side information or task-specific knowledge. However, they are not always available. Dropout has been widely recognized as a powerful strategy for preventing co-adaptation in deep neural network training. What is more, it requires no prior knowledge and brings no additional terms or transformations into the original loss function. In this paper, we introduce the dropout strategy into NMF and propose a dropout NMF algorithm. Specifically, we first design a simple dropout strategy that fuses a dropout mask in the NMF framework to prevent feature co-adaptation. Then a sequential dropout strategy is further proposed to reduce randomness and to achieve robustness. Experimental results on multiple datasets confirm that our dropout NMF methods can not only improve NMF but also further improve existing representative matrix factorization models.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?