Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IIASA DAREarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Regional Environmental Change
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.24451/ar...
Other literature type . 2019
Data sources: Datacite
https://dx.doi.org/10.5167/uzh...
Other literature type . 2019
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Loss and Damage in the mountain cryosphere

Authors: Christian Huggel; Mark Carey; Veruska Muccione; Christine Jurt; Christine Jurt; Reinhard Mechler; Rachel James; +1 Authors

Loss and Damage in the mountain cryosphere

Abstract

The mountain cryosphere, which includes glaciers, permafrost, and snow, is one of the Earth’s systems most strongly affected by climate change. In recent decades, changes in the cryosphere have been well documented in many high-mountain regions. While there are some benefits from snow and ice loss, the negative impacts, including from glacier lake outburst floods and variations in glacier runoff, are generally considered to far outweigh the positive impacts, particularly if cultural impacts are considered. In international climate policy, there has been growing momentum to address the negative impacts of climate change, or ‘Loss and Damage’ (L&D) from climate change. It is not clear exactly what can and should be done to tackle L&D, but researchers and practitioners are beginning to engage with policy discussions and develop potential frameworks and supporting information. Despite the strong impact of climate change on the mountain cryosphere, there has been limited interaction between cryosphere researchers and L&D. Therefore, little work has been done to consider how L&D in the mountain cryosphere might be conceptualized, categorized, and assessed. Here, we make a first attempt to analyze L&D in the mountain cryosphere by conducting a systematic literature review to extract L&D impacts and examples from existing literature. We find that L&D is a global phenomenon in the mountain cryosphere and has been more frequently documented in the developing world, both in relation with slow and sudden onset processes. We develop a categorization of L&D, making distinctions between physical and societal impacts, primary and secondary impacts, and identifying seven types of L&D (including L&D to culture, livelihoods, revenue, natural resources, life, and security). We hope this conceptual approach will support future work to understand and address L&D in the mountain cryosphere.

Countries
United Kingdom, Switzerland, United Kingdom, Austria
Keywords

Global and Planetary Change, 550, 2306 Global and Planetary Change, Loss and damage, 333, Climate change impacts, 10122 Institute of Geography, Mountain cryosphere, Risks, 910 Geography & travel

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
Green
bronze