Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurological Science...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neurological Sciences
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Neuroimaging in chronic migraine

Authors: Luisa, Chiapparini; Stefania, Ferraro; Licia, Grazzi; Gennaro, Bussone;

Neuroimaging in chronic migraine

Abstract

In chronic migraine, many neuroimaging studies with advanced techniques showed abnormalities in several brain areas involved in pain processing. The structural and functional dysfunctions are reported in cerebral areas localized in the brainstem and in the lateral and medial pain pathways. Using the advanced technique of volumetric MRI (voxel-based morphometry), reduction in the grey and white matter in brain areas of the pain network and increased density of the structures of the brainstem were observed in patients with episodic or chronic migraine. Most of the studies of functional anatomy in chronic migraine uses positron emission tomography (PET) and functional RM. These techniques could detect cerebral areas with regional cerebral blood flow and blood level oxygenation-dependent (BOLD) signal changes. Several PET and functional MRI experiments in patients with chronic migraine and drugs overuse before and after the withdrawal showed hypometabolism and hypoactivation in cortical areas involved in pain processing. These areas normalize their activity after detoxification, indicating reversible metabolic changes and BOLD signal changes as observed in other chronic pain. Functional and structural alterations observed in the cerebral areas of the pain network could be a result of a selective dysfunction of these regions due to cortical overstimulation associated with chronic pain. Advanced neuroimaging techniques have revolutionized the knowledge on chronic migraine, determining specific cortical substrate that could explain different forms of chronic migraine and perhaps the predisposition of patients to different therapeutic responses and to possible relapse in drug abuse.

Keywords

Migraine Disorders, Positron-Emission Tomography, Chronic Disease, Image Processing, Computer-Assisted, Brain, Humans, Magnetic Resonance Imaging

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!