<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 11878560
The taxonomic position of a thermoacidophilic crenarchaeote Sulfolobus sp. strain 7, previously isolated from the Beppu Hot Springs in the geothermal area of Kyushu Island, Japan, was investigated by cloning and sequencing, by phylogenetic analysis of the 16S rRNA gene sequence, by DNA-DNA homology with similar species, and by biochemical characterization of the isolate. This isolate is an obligate aerobe and grows optimally at 80 degrees C and pH2.5-3 under aerobic and chemoheterotrophic growth conditions by aerobic respiration rather than simple fermentation. In conjunction with the phenotypic properties, the present phylogenetic analysis based on the 16S rRNA gene sequence and DNA-DNA hybridization experiments indicate that this isolate is related to the described Sulfolobus taxon and should be considered a novel species of the genus. We propose that this isolate is a novel species of the genus Sulfolobus that we name Sulfolobus tokodaii sp. nov. The type strain is strain 7 (JCM 10545).
Hot Temperature, Japan, Genes, Bacterial, RNA, Ribosomal, 16S, Water Microbiology, DNA, Ribosomal, Aerobiosis, Phylogeny, Sulfolobus
Hot Temperature, Japan, Genes, Bacterial, RNA, Ribosomal, 16S, Water Microbiology, DNA, Ribosomal, Aerobiosis, Phylogeny, Sulfolobus
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 128 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |