Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Orthopaed...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Orthopaedic Science
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The effect of micromovement on callus formation

Authors: T, Yamaji; K, Ando; S, Wolf; P, Augat; L, Claes;

The effect of micromovement on callus formation

Abstract

Micromovement at fracture sites is known to promote callus formation and bridging of the bony fragments. The present study was conducted to identify the suitable amount of micromovement, and to analyze the location and timing of callus proliferation. A standardized transverse osteotomy, in the right metatarsus of 32 sheep, was used as a fracture model. The osteotomy was externally fixed with a special ring fixator, which allowed axial micromovements of defined sizes. The animals were divided into four groups, with gaps of 2 mm and 6 mm, and micromovements of 0.3 mm and 0.7 mm, respectively. The labeling of new bone formation was performed by the intravenous injection of calcein green in the fourth week and tetracycline in the eighth week. Nine weeks postoperatively the sheep were killed. The explanted metatarsals were radiographed for the measurement of the periosteal callus area and were nondestructively loaded in a three-point bending test to determine their flexural rigidity. Histological analysis of undecalcified bone was performed in bone slices in the sagittal plane. Fluorescent green (callus formed in the fourth week) and yellow areas (callus formed in the eighth week) and the area of connective tissue were determined, using fluorescence microscopy. Bone formation was larger in the eighth week than that in the fourth week in all groups. In the fourth week, large micromovements in the small gap resulted in increased bone formation, whereas, for large gaps, the large micromovements diminished new bone formation. With large micromovement, the amount of newly formed bone within the gap decreased with increasing gap size, suggesting a delay of bone healing. Stimulation of new bone formation by micromovement was mainly effective in the early healing phase (4 weeks postoperatively). Large gaps showed the least new bone formation at the fracture site and the lowest flexural rigidity. From the histological analysis, it was found that the flexural rigidity correlated with the new bone area in the periosteal region.

Related Organizations
Keywords

Fracture Healing, Male, Sheep, Movement, Animals, Bony Callus, Metacarpus, Biomechanical Phenomena, Osteotomy

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    112
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
112
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!