
handle: 10272/23837
AbstractDespite its role in the continuing evolution of the Universe, only a small fraction of the mass of visible material can be attributed to the Higgs boson alone. The overwhelmingly dominant share may/should arise from the strong interactions that act in the heart of nuclear matter; namely, those described by quantum chromodynamics. This contribution describes how studying and explaining the attributes of pseudoscalar mesons can open an insightful window onto understanding the origin of mass in the Standard Model and how these insights inform our knowledge of hadron structure. The survey ranges over distribution amplitudes and functions, electromagnetic and gravitational form factors, light-front wave functions, and generalized parton distributions. Advances made using continuum Schwinger function methods and their relevance for experimental efforts are highlighted.
Nuclear Theory (nucl-th), High Energy Physics - Phenomenology, High Energy Physics - Lattice, High Energy Physics - Phenomenology (hep-ph), Nuclear Theory, High Energy Physics - Lattice (hep-lat), FOS: Physical sciences, 22 Física
Nuclear Theory (nucl-th), High Energy Physics - Phenomenology, High Energy Physics - Lattice, High Energy Physics - Phenomenology (hep-ph), Nuclear Theory, High Energy Physics - Lattice (hep-lat), FOS: Physical sciences, 22 Física
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
