
handle: 2440/77436
The last few years have seen a dramatic improvement in our knowledge of the strange form factors of the nucleon. With regard to the vector from factors the level of agreement between theory and experiment gives us considerable confidence in our ability to calculate with non-perturbative QCD. The calculation of the strange scalar form factor has moved significantly in the last two years, with the application of new techniques which yield values considerably smaller than believed for the past 20 years. These new values turn out to have important consequences for the detection of neutralinos, a favourite dark matter candidate. Finally, very recent lattice studies have resurrected interest in the famed H-dibaryon, with modern chiral extrapolation of lattice data suggesting that it may be only slightly unbound. We review some of the major sources of uncertainty in that chiral extrapolation.
Invited talk at the Asia-Pacific few Body Conference, Seoul Korea
Nuclear Theory (nucl-th), High Energy Physics - Phenomenology, High Energy Physics - Lattice, High Energy Physics - Phenomenology (hep-ph), Nuclear Theory, High Energy Physics - Lattice (hep-lat), FOS: Physical sciences
Nuclear Theory (nucl-th), High Energy Physics - Phenomenology, High Energy Physics - Lattice, High Energy Physics - Phenomenology (hep-ph), Nuclear Theory, High Energy Physics - Lattice (hep-lat), FOS: Physical sciences
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
