Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pediatric Nephrologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pediatric Nephrology
Article . 2012 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hypophosphatemia and growth

Authors: Rocío Fuente; Laura Mantecón; Natalia Mejía; Helena Gil-Peña; Flor A. Ordoñez; Fernando Santos;

Hypophosphatemia and growth

Abstract

Over the last decade the discovery of fibroblast growth factor 23 (FGF23) and the progressive and ongoing clarification of its role in phosphate and mineral metabolism have led to expansion of the diagnostic spectrum of primary hypophosphatemic syndromes. This article focuses on the impairment of growth in these syndromes. Growth retardation is a common, but not constant, feature and it presents with large variability. As a result of the very low prevalence of other forms of primary hypophosphatemic syndromes, the description of longitudinal growth and the pathogenesis of its impairment have been mostly studied in X-linked hypophosphatemia (XLH) patients and in Hyp mice, the animal model of this disease. In general, children with XLH have short stature with greater shortness of lower limbs than trunk. Treatment with phosphate supplements and 1α vitamin D derivatives heals active lesions of rickets, but does not normalize growth of XLH patients. Patients might benefit from recombinant human growth hormone (rhGH) therapy, which may accelerate the growth rate without increasing body disproportion or correcting hypophosphatemia. These clinical data as well as research findings obtained in Hyp mice suggest that the pathogenesis of defective growth in XLH and other hypophosphatemic syndromes is not entirely dependent on the mineralization disorder and point to other effects of hypophosphatemia itself or FGF23 on the metabolism of bone and growth plate.

Keywords

Bone Development, Human Growth Hormone, Genetic Diseases, X-Linked, Mice, Transgenic, Vitamins, PHEX Phosphate Regulating Neutral Endopeptidase, Body Height, Bone and Bones, Recombinant Proteins, Phosphates, Fibroblast Growth Factors, Disease Models, Animal, Fibroblast Growth Factor-23, Mice, Dietary Supplements, Animals, Humans, Familial Hypophosphatemic Rickets, Growth Disorders

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!