Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Surgical Endoscopyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Surgical Endoscopy
Article . 2023 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of a force feedback function in a surgical robot on the suturing procedure

Authors: Yoshimi Yamasaki; Masanori Tokunaga; Yoshihiro Sakai; Hiroki Kayasuga; Teruyuki Nishihara; Kotaro Tadano; Kenji Kawashima; +2 Authors

Effects of a force feedback function in a surgical robot on the suturing procedure

Abstract

Currently, widely used robotic surgical systems do not provide force feedback. This study aimed to evaluate the impact and benefits of a force feedback function on the suturing procedure.Twenty surgeons were recruited and divided into young (Y-group, n = 11) and senior (S-group, n = 9) groups, based on their years of surgical experience. The effect of the force feedback function on suturing quality was evaluated using an objective assessment system (A-LAP mini, Kyoto Kagaku Co., Ltd., Kyoto, Japan). Each participant completed the suturing task on intestinal model sheets with the robotic contact force feedback on and off. The task accomplishment time (s), maximal force (Newton, N) applied to the robotic forceps, and quality of suturing (assessed by A-LAP mini) were recorded as performance parameters.In total, the maximal force applied to the robotic forceps was significantly decreased with the robotic force feedback switched on (median [interquartile range]: 2.8 N (2.3-3.2)) as compared with when the feedback was switched off (3.4 N (2.7-4.0), P < 0.001). The contact force feedback function did not affect the objectively assessed suturing score (18 points (17.7-19.0) versus 18 points (17.0-19.0), P = 0.421). The contact force feedback function slightly shortened the task accomplishment time in the Y-group (552.5 s (466.5-832) versus 605.5 s (476.2-689.7), P = 0.851) but not in the S-group (566 s (440.2-703.5) versus 470.5 s (419.7-560.2), P = 0.164).With the contact force feedback function, the suturing task was completed with a smaller maximal force, while maintaining the quality of suturing. Because the benefits are more apparent in young surgeons, robots with the contact force feedback function will facilitate the educational process in novice surgeons.

Related Organizations
Keywords

Surgeons, Robotic Surgical Procedures, Suture Techniques, Humans, Robotics, Clinical Competence, Surgical Instruments, Neurosurgical Procedures, Feedback

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!