
High-resolution esophageal manometry (HRM) utilizes sufficient pressure sensors such that intraluminal pressure is monitored as a continuum along luminal length, similar to time viewed as a continuum on polygraph tracings in 'conventional' manometry. When HRM is coupled with pressure topography plotting, and pressure amplitude is transformed into spectral colors with isobaric areas indicated by same-colored regions, "Clouse plots" are generated. HRM has several advantages compared to the technology that it replaced: (1) the contractility of the entire esophagus can be viewed simultaneously in a uniform standardized format, (2) standardized objective metrics of peristaltic and sphincter function can be systematically applied for interpretation, and (3) topographic patterns of contractility are more easily recognized with greater reproducibility. Leveraging these advantages led to the current standard for the interpretation of clinical esophageal HRM studies, the Chicago Classification (CC), now in its fourth iteration. Compared to conventional manometry, HRM has vastly improved the sensitivity for detecting achalasia, largely due to the objectivity and accuracy of identification of impaired esophagogastric junction (EGJ) relaxation. Additionally, it has led to the subcategorization of achalasia into three clinically relevant subtypes, differentiated by the contractile function of the esophageal body, and identified an additional disorder of EGJ outflow obstruction wherein esophageal peristalsis is preserved. Headway has also been made in understanding hypocontractile and hypercontractile conditions. In summary, HRM and the CC process have revolutionized our understanding of esophageal motility and motility disorders. Moving forward, there will always be remaining challenges, but we now have the tools to meet them.
Esophageal Achalasia, Manometry, Humans, Reproducibility of Results, Esophageal Motility Disorders
Esophageal Achalasia, Manometry, Humans, Reproducibility of Results, Esophageal Motility Disorders
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
