Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bulletin of Volcanol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bulletin of Volcanology
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bulletin of Volcanology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Open Access Repository
Article . 2020
License: CC BY
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The summer 2019 basaltic Vulcanian eruptions (paroxysms) of Stromboli

Authors: G. Giordano; G. De Astis;

The summer 2019 basaltic Vulcanian eruptions (paroxysms) of Stromboli

Abstract

AbstractStromboli is an active, open conduit mafic volcano, whose persistent mild Strombolian activity is occasionally punctuated by much stronger explosions, known as paroxysms. During summer 2019, the volcano unexpectedly produced one such paroxysm on July 3, followed by intense explosive and intermittent effusive activity culminating in a second paroxysm on August 28. Visual observations and the analysis of the fall deposits associated with the two paroxysms allowed us to reconstruct ballistic exit velocities of up to 160 m s−1. Plume heights of ~ 8.4 km and 6.4 km estimated for the two events correspond to mass eruption rates of 1.1 × 106 kg s−1 and 3.6 × 105 kg s−1, respectively. This is certainly an underestimate as directional pyroclastic flows into which mass was partitioned immediately formed, triggering small tsunamis at the sea entrance. The mass of ballistic spatters and blocks erupted during the July 3 event formed a continuous cover at the summit of the volcano, with a mass calculated at ~ 1.4 × 108 kg. The distribution of fall deposits of both the July 3 and August 28 events suggests that pyroclasts characterized by terminal fall velocities < 10–20 m s−1 remained fully suspended within the convective region of the plume and did not fall at distances closer than ca 1700 m to the vent. Based on the impulsive, blast-like phenomenology of paroxysms as well as the deposit distribution and type, paroxysms are classified as basaltic Vulcanian in style. The evolution of the summer 2019 eruptive events was not properly captured within the framework of the alert level system which is focused on tsunamigenic processes, and this is discussed so as to provide elements for the implementation of the reference scenarios and an upgrade of the system to take into account such events. In particular we find that, although still largely unpredictable, at least at operational time scales, and not necessarily tsunamigenic, Vulcanian eruptions and the subsequent evolution of the eruptive phenomena should be considered for the alert level system. This serves as a warning to the implementation of alert systems where the unexpected needs to be taken into account, even at systems that are believed to be relatively “predictable” as is the case at many persistently active, open vent mafic systems.

Keywords

NEANIAS Atmospheric Research Community, Geochemistry and Petrology, Ballistic ejecta; Eruption plume; Paroxysm; Strombolian eruptions; Volcanic hazard; Vulcanian eruptions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 1%
Top 10%
Top 1%
Green
hybrid