Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cell and Tissue Rese...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell and Tissue Research
Article . 2006 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Kainate receptors

Authors: Paulo, Pinheiro; Christophe, Mulle;

Kainate receptors

Abstract

Kainate receptors form a family of ionotropic glutamate receptors that appear to play a special role in the regulation of the activity of synaptic networks. This review first describes briefly the molecular and pharmacological properties of native and recombinant kainate receptors. It then attempts to outline the general principles that appear to govern the function of kainate receptors in the activity of synaptic networks under physiological conditions. It subsequently describes the way that kainate receptors are involved in synaptic integration, synaptic plasticity, the regulation of neurotransmitter release and the control of neuronal excitability, and the manner in which they might play an important role in synaptogenesis and synaptic maturation. These functions require the proper subcellular localization of kainate receptors in specific functional domains of the neuron, necessitating complex cellular and molecular trafficking events. We show that our comprehension of these mechanisms is just starting to emerge. Finally, this review presents evidence that implicates kainate receptors in pathophysiological conditions such as epilepsy, excitotoxicity and pain, and that shows that these receptors represent promising therapeutic targets.

Keywords

Epilepsy, Neuronal Plasticity, Receptors, Kainic Acid, Synapses, Animals, Humans, Pain, Synaptic Transmission, Recombinant Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    213
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
213
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!