Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pflügers Archiv - Eu...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pflügers Archiv - European Journal of Physiology
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Oxidative stress and beta-cell dysfunction

Authors: Gisela, Drews; Peter, Krippeit-Drews; Martina, Düfer;

Oxidative stress and beta-cell dysfunction

Abstract

Diabetes mellitus type 1 and 2 (T1DM and T2DM) are complex multifactorial diseases. Loss of beta-cell function caused by reduced secretory capacity and enhanced apoptosis is a key event in the pathogenesis of both diabetes types. Oxidative stress induced by reactive oxygen and nitrogen species is critically involved in the impairment of beta-cell function during the development of diabetes. Because of their low antioxidant capacity, beta-cells are extremely sensitive towards oxidative stress. In beta-cells, important targets for an oxidant insult are cell metabolism and K(ATP) channels. The oxidant-evoked alterations of K(ATP) channel activity seem to be critical for oxidant-induced dysfunction because genetic ablation of K(ATP) channels attenuates the effects of oxidative stress on beta-cell function. Besides the effects on metabolism, interference of oxidants with mitochondria induces key events in apoptosis. Consequently, increasing antioxidant defence is a promising strategy to delay beta cell failure in (pre)-diabetic patients or during islet transplantation. Knock-out of K(ATP) channels has beneficial effects on oxidant-induced inhibition of insulin secretion and cell death. Interestingly, these effects can be mimicked by sulfonylureas that have been used in the treatment of T2DM for many years. Loss of functional K(ATP) channels leads to up-regulation of antioxidant enzymes, a process that depends on cytosolic Ca(2+). These observations are of great importance for clinical intervention because they show a possibility to protect beta-cells at an early stage before dramatic changes of the secretory capacity and loss of cell mass become manifest and lead to glucose intolerance or even overt diabetes.

Related Organizations
Keywords

Oxidative Stress, Insulin-Secreting Cells, Diabetes Mellitus, Animals, Humans

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    274
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
274
Top 1%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!