Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biological Cyberneti...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biological Cybernetics
Article . 1994 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biological Cybernetics
Article . 1994 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

"Velocity leakage" in the pigeon vestibulo-ocular reflex

``Velocity leakage'' in the pigeon vestibulo-ocular reflex
Authors: Manning J. Correia; Thomas J. Anastasio;

"Velocity leakage" in the pigeon vestibulo-ocular reflex

Abstract

The transfer characteristics of the vestibulo-ocular reflex (VOR), and of the semicircular canal primary afferents (SCPAs) that drive it, have been studied in several species. In monkeys and cats, the dominant time constant describing horizontal VOR dynamics (tau hv) is longer than that (tau c) of horizontal SCPAs. This lengthening of the time constant has been attributed to a "velocity storage" mechanism that has been modeled as a positive feedback loop in the VOR pathways. We have studied the transfer characteristics of horizontal and vertical VOR and SCPAs in unanesthetized pigeons. In this species the dominant time constants of both the horizontal and vertical VOR (tau hv and tau vv) are shorter that tau c. This finding indicates that time constants characterizing the lower frequency response of the VOR can be lengthened or shortened depending on the species. We propose that in the pigeon the "velocity leakage" mechanism can be modeled by substituting negative feedback for positive feedback in the model of the VOR pathways. Negative feedback can also account for the further shortening of tau hv and tau vv as VOR gain increases with arousal. Additionally, making the negative feedback loop nonlinear can model the dependency of lower frequency VOR phase on amplitude, and skew in VOR waveforms. Pigeon VOR and SCPA dynamics also differ in their adaptive properties and higher frequency behavior. A predominance of input from highly adaptive SCPAs is proposed to account for the increased adaptation of the vertical VOR as compared with SCPAs overall. A pure time-delay associated with VOR operation can explain the phase lag of the VOR relative to SCPAs at higher frequencies.

Keywords

Motor Neurons, Afferent Pathways, Models, Neurological, Haplorhini, Reflex, Vestibulo-Ocular, Semicircular Canals, Feedback, Neural biology, Oculomotor Muscles, Cats, Animals, Columbidae, Mathematics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!