Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Climate Dynamicsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Climate Dynamics
Article . 2021 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Long-wave trough and ridge controlling of the water vapor transport to the Tibet Plateau by the tropical cyclones in the Bay of Bengal in May

Authors: Xiaoli Zhou; Qiang Xie; Lei Yang;

Long-wave trough and ridge controlling of the water vapor transport to the Tibet Plateau by the tropical cyclones in the Bay of Bengal in May

Abstract

This study investigates the water vapor transport to the Tibetan Plateau (TP) induced by Bay of Bengal (BOB) tropical cyclones (TCs) in May during 1979–2019. The water vapor around the BOB TCs can be transported to the south of the TP by the southerlies at the upper troposphere east of the TC center. Whether the water vapor can cross the southern boundary of the Tibetan Plateau (SBTP) may rely on the different configurations of BOB TCs and long-wave trough and ridge. We found that the water vapor may (may not) cross SBTP if the TC’s wind field converges with the westerlies in front of the trough (ridge). The physical mechanism is explored according to the momentum equation. When the TC moves northward around the SBTP, its wind field could interact with the trough (Type-T TC) and ridge (Type-R TC) in the westerlies. In the area close to the trough line (ridge line), the meridional acceleration is positive (negative), hence meridional component of velocity increases (decreases). Therefore, it is more favorable for the water vapor transported northward if the Type-T TC’s wind field enters the westerlies from the area close to the trough line than the ridge line. The simulation of the BOB TC cases using WRF model confirms the importance of the relative position between the Type-T TC and the SBTP to the water vapor transport over the SBTP. For the Type-T TC, the meridional moisture budget over the SBTP is positively correlated with the TC intensity and negatively correlated with the meridional distance between the TC center and the SBTP. However, for the Type-R TC, the meridional moisture budget is not related to the TC intensity and the meridional distance. The configuration of TC and long-wave trough or ridge may be predictable through the intraseasonal oscillation activity in the eastern BOB and the southern Arabian Sea.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!