
It is known that paraconsistent logical systems are more appropriate for inconsistency-tolerant and uncertainty reasoning than other types of logical systems. In this paper, a paraconsistent computation tree logic, PCTL, is obtained by adding paraconsistent negation to the standard computation tree logic CTL. PCTL can be used to appropriately formalize inconsistency-tolerant temporal reasoning. A theorem for embedding PCTL into CTL is proved. The validity, satisfiability, and model-checking problems of PCTL are shown to be decidable. The embedding and decidability results indicate that we can reuse the existing CTL-based algorithms for validity, satisfiability, and model-checking. An illustrative example of medical reasoning involving the use of PCTL is presented.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
