Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Physics Aarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Physics A
Article . 2002 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

Photoelastic effect and mirage deflection in anisotropic materials

Authors: A. Salazar; W.T. Ang; M. Gateshki; G. Gutiérrez-Juárez; A. Sánchez-Lavega;

Photoelastic effect and mirage deflection in anisotropic materials

Abstract

The collinear mirage technique is widely used to measure the thermal diffusivity of semi-transparent materials. However, in a recent paper [A. Salazar, M. Gateshki and A. Sanchez-Lavega: Appl. Phys. Lett. 76, 2665 (2000)], it was shown that for isotropic materials, because of the influence of photoelastic effect, the method was sensitive to the polarization state of the probe beam. The present paper extends the previous work to include anisotropic materials. In particular, we focus on the experimental conditions under which the thermal diffusivity of each crystal system can be measured using the phase method. Our theoretical model indicates that while the thermal diffusivity of isotropic materials can be measured using an unpolarized probe beam, for anisotropic materials, even the use of an unpolarized probe beam does not guarantee the validity of the method in all crystal systems. Experimental measurements performed on cubic, hexagonal and monoclinic crystals confirm the validity of the model.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!