Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Surgical and Radiolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Surgical and Radiologic Anatomy
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Anatomy and white matter connections of the lateral occipital cortex

Authors: Ali H. Palejwala; Kyle P. O’Connor; Panayiotis Pelargos; Robert G. Briggs; Camille K. Milton; Andrew K. Conner; Ty M. Milligan; +3 Authors

Anatomy and white matter connections of the lateral occipital cortex

Abstract

White matter tracts link different regions of the brain, and the known functions of those interconnected regions may offer clues about the roles that white matter tracts play in information relay. The authors of this report discuss the structure and function of the lateral occipital lobe and how the lateral occipital lobe communicates with other regions via white matter tracts.The authors used generalized q-sampling imaging and cadaveric brain dissections to uncover the subcortical white matter connections of the lateral occipital lobe. The authors created GQI of ten healthy controls and dissected ten cadaveric brains.The middle longitudinal fasciculus, vertical occipital fasciculus, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, optic radiations, and a diverse array of U-shaped fibers connect the lateral occipital lobe to itself, parts of the temporal, parietal, and medial occipital cortices. The complex functional processes attributed to the lateral occipital lobe, including object recognition, facial recognition, and motion perception are likely related to the subcortical white matter tracts described within this study.There was good concordance between the white matter tracts generated using GQI and the white matter tracts that were found after dissection of the cadaveric brains. This article presents the anatomic connections of the lateral occipital lobe and discusses the associated functions.

Keywords

Diffusion Tensor Imaging, Case-Control Studies, Dissection, Neural Pathways, Cadaver, Humans, Occipital Lobe, White Matter, Healthy Volunteers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?