Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Microbiology...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Microbiology and Biotechnology
Article . 2013 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research.fi
Article . 2020 . Peer-reviewed
Data sources: Research.fi
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Discovery of novel secreted fungal sulfhydryl oxidases with a plate test screen

Authors: Greta Faccio; Greta Faccio; Kristiina Kruus; Johanna Buchert; Maija-Liisa Mattinen; Outi Nivala; Outi Nivala;

Discovery of novel secreted fungal sulfhydryl oxidases with a plate test screen

Abstract

Sulfhydryl oxidases (SOX) are FAD-dependent enzymes capable of oxidising free thiol groups and forming disulphide bonds. Although the quantity of scientific papers and suggested applications for SOX is constantly increasing, only a limited number of microbial SOX have been reported and are commercially available. Hence, the aim of this study was to develop a fast and reliable qualitative plate test for screening novel secreted fungal SOX. The screening was based on the Ellman's reagent, i.e. 5,5'-dithiobis[2-nitrobenzoic acid]. Altogether, 32 fungal strains from an in-house culture collection were screened. A total of 13 SOX-producing strains were found positive in the plate test screen. The novel SOX producers were Aspergillus tubingensis, Chaetomium globusum, Melanocarpus albomyces, Penicillium aurantiogriseum, Penicillium funiculosum, Coniophora puteana and Trametes hirsuta. Six of the discovered SOX were partially characterised by determination of isoelectric point, pH optimum and substrate specificity. A. tubingensis was identified as the most efficient novel SOX producer.

Keywords

Microbiological Techniques, oxidation, screening, Fungi, thiol, Hydrogen-Ion Concentration, sulfhydryl oxidase, Substrate Specificity, enzyme, Enzyme Stability, Mass Screening, fungi, Isoelectric Point, Sulfhydryl Compounds, Oxidoreductases, Ellman's reagent, Oxidation-Reduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!