Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Biophysics ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Biophysics Journal
Article . 2007 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Peroxidation of liposomal lipids

Authors: Edit, Schnitzer; Ilya, Pinchuk; Dov, Lichtenberg;

Peroxidation of liposomal lipids

Abstract

Free radicals, formed via different mechanisms, induce peroxidation of membrane lipids. This process is of great importance because it modifies the physical properties of the membranes, including its permeability to different solutes and the packing of lipids and proteins in the membranes, which in turn, influences the membranes' function. Accordingly, much research effort has been devoted to the understanding of the factors that govern peroxidation, including the composition and properties of the membranes and the inducer of peroxidation. In view of the complexity of biological membranes, much work was devoted to the latter issues in simplified model systems, mostly lipid vesicles (liposomes). Although peroxidation in model membranes may be very different from peroxidation in biological membranes, the results obtained in model membranes may be used to advance our understanding of issues that cannot be studied in biological membranes. Nonetheless, in spite of the relative simplicity of peroxidation of liposomal lipids, these reactions are still quite complex because they depend in a complex fashion on both the inducer of peroxidation and the composition and physical properties of the liposomes. This complexity is the most likely cause of the apparent contradictions of literature results. The main conclusion of this review is that most, if not all, of the published results (sometimes apparently contradictory) on the peroxidation of liposomal lipids can be understood on the basis of the physico-chemical properties of the liposomes. Specifically: (1) The kinetics of peroxidation induced by an "external" generator of free radicals (e.g. AAPH) is governed by the balance between the effects of membrane properties on the rate constants of propagation (k (p)) and termination (k (t)) of the free radical peroxidation in the relevant membrane domains, i.e. in those domains in which the oxidizable lipids reside. Both these rate constants depend similarly on the packing of lipids in the bilayer, but influence the overall rate in opposite directions. (2) Peroxidation induced by transition metal ions depends on additional factors, including the binding of metal ions to the lipid-water interface and the formation of a metal ions-hydroperoxide complex at the surface. (3) Reducing agents, commonly regarded as "antioxidants", may either promote or inhibit peroxidation, depending on the membrane composition, the inducer of oxidation and the membrane/water partitioning. All the published data can be explained in terms of these (quite complex) generalizations. More detailed analysis requires additional experimental investigations.

Related Organizations
Keywords

Oxygen, Biomimetics, Lipid Bilayers, Liposomes, Animals, Humans, Lipid Peroxidation, Oxidation-Reduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    119
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
119
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!