
pmid: 25421389
Chironomids are abundant insects in freshwater habitats. They undergo a complete metamorphosis of four life stages: eggs, larvae, and pupae in water, and a terrestrial adult stage. Chironomids are known to be pollution-tolerant, but little is known about their resistance mechanisms to toxic substances. Here we review current knowledge regarding the chironomid microbiome. Chironomids were found as natural reservoirs of Vibrio cholerae and Aeromonas spp. A stable bacterial community was found in the egg masses and the larvae when both culture-dependent and -independent methods were used. A large portion of the endogenous bacterial species was closely related to species known as toxicant degraders. Bioassays based on Koch's postulates demonstrated that the chironomid microbiome plays a role in protecting its host from toxic hexavalent chromium and lead. V. cholerae, a stable resident in chironomids, is present at low prevalence. It degrades the egg masses by secreting haemagglutinin/protease, prevents eggs from hatching, and exhibits host pathogen interactions with chironomids. However, the nutrients from the degraded egg masses may support the growth of the other microbiome members and consequently control V. cholerae numbers in the egg mass. V. cholerae, other chironomid endogenous bacteria, and their chironomid host exhibit complex mutualistic relationships.
Life Cycle Stages, Species Specificity, Microbiota, Animals, Quorum Sensing, Aeromonas, Vibrio cholerae, Chironomidae
Life Cycle Stages, Species Specificity, Microbiota, Animals, Quorum Sensing, Aeromonas, Vibrio cholerae, Chironomidae
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 46 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
