Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Microbial Ecologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Microbial Ecology
Article . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Coxiella Symbionts in the Cayenne Tick Amblyomma cajennense

Authors: Carlos A. G. Soares; Gabrielle Dietrich; Nordin S. Zeidner; Andrias Hojgaard; Joseph Piesman; Michael Levin; Erik Machado-Ferreira;

Coxiella Symbionts in the Cayenne Tick Amblyomma cajennense

Abstract

Members of the Coxiella genus are intracellular bacteria that can infect a variety of animals including humans. A symbiotic Coxiella was recently described in Amblyomma americanum ticks in the Northern Hemisphere with no further investigations of other Amblyomma species in other geographic regions. These ixodid ticks represent a group of important vectors for human infectious agents. In the present work, we have demonstrated that symbiotic Coxiella (SCox) are widespread, occurring in South America and infecting 100% of all life stages and eggs of the Cayenne ticks Amblyomma cajennense from Brazil and the USA. Using light microscopy, in situ hybridization, and PCR, we demonstrated SCox in salivary glands, ovaries, and the intestines of A. cajennense. These symbionts are vertically and transtadially transmitted in laboratory reared A. cajennense, and quantitative PCR analyses indicate that SCox are more abundant in adult female ticks, reaching values corresponding to an 11×, 38×, and 200× increase in SCox 16S rRNA gene copy number in unfed females, compared to unfed nymphs, larvae, and eggs, respectively. Phylogenetic analyses showed distinct SCox subpopulations in the USA and Brazil and demonstrated that SCox bacteria do not group with pathogenic Coxiella burnetii.

Keywords

Coxiella, Ixodidae, Molecular Sequence Data, Animals, Female, Symbiosis, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?