
pmid: 10501830
The formation of pores by membrane-inserted diphtheria toxin is closely linked to the translocation of its catalytic chain across membranes. In this report a number of aromatic polyanionic molecules were identified that inhibit toxin-induced leakage of molecules from model membrane vesicles. One inhibitor, Cibacron blue, totally blocked pore formation. Aniline blue and Fast Green decreased the size of the molecule released by a given concentration of toxin. Amaranth appeared to reduce the maximal amount of leakage, without greatly affecting the size of the molecule released at a given toxin concentration. Finally, Ponceau S and Cibacron brilliant red appeared to exhibit a mixture of these various types of inhibition. The inhibitors neither prevented the conformational transition of the toxin to form a hydrophobic state at low pH, nor (with the exception of Cibacron Brilliant Red) appeared to strongly inhibit toxin binding to model membranes. Additional experiments showed release of trapped materials from model membranes by isolated T domain of the toxin was similar to that by whole toxin. The effects of inhibitors on T domain induced release was also similar to that they have on whole toxin. Therefore, it is likely that the inhibition of pore formation by whole toxin involves inhibitor interaction with the T domain. The inhibitors identified in this study may be helpful for development of agents that interfere with toxin action in vivo.
Aniline Compounds, Cell Membrane Permeability, Protein Conformation, Triazines, Rosaniline Dyes, Diphtheria Toxin, Membranes, Artificial, Hydrogen-Ion Concentration, Coloring Agents, Fluorescent Dyes
Aniline Compounds, Cell Membrane Permeability, Protein Conformation, Triazines, Rosaniline Dyes, Diphtheria Toxin, Membranes, Artificial, Hydrogen-Ion Concentration, Coloring Agents, Fluorescent Dyes
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
