Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Membr...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Membrane Biology
Article . 1999 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Effects of Inhibitors Upon Pore Formation by Diphtheria Toxin and Diphtheria Toxin T Domain

Authors: J C, Sharpe; K, Kachel; E, London;

The Effects of Inhibitors Upon Pore Formation by Diphtheria Toxin and Diphtheria Toxin T Domain

Abstract

The formation of pores by membrane-inserted diphtheria toxin is closely linked to the translocation of its catalytic chain across membranes. In this report a number of aromatic polyanionic molecules were identified that inhibit toxin-induced leakage of molecules from model membrane vesicles. One inhibitor, Cibacron blue, totally blocked pore formation. Aniline blue and Fast Green decreased the size of the molecule released by a given concentration of toxin. Amaranth appeared to reduce the maximal amount of leakage, without greatly affecting the size of the molecule released at a given toxin concentration. Finally, Ponceau S and Cibacron brilliant red appeared to exhibit a mixture of these various types of inhibition. The inhibitors neither prevented the conformational transition of the toxin to form a hydrophobic state at low pH, nor (with the exception of Cibacron Brilliant Red) appeared to strongly inhibit toxin binding to model membranes. Additional experiments showed release of trapped materials from model membranes by isolated T domain of the toxin was similar to that by whole toxin. The effects of inhibitors on T domain induced release was also similar to that they have on whole toxin. Therefore, it is likely that the inhibition of pore formation by whole toxin involves inhibitor interaction with the T domain. The inhibitors identified in this study may be helpful for development of agents that interfere with toxin action in vivo.

Related Organizations
Keywords

Aniline Compounds, Cell Membrane Permeability, Protein Conformation, Triazines, Rosaniline Dyes, Diphtheria Toxin, Membranes, Artificial, Hydrogen-Ion Concentration, Coloring Agents, Fluorescent Dyes

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!