
arXiv: 1510.03475
Topological order of a topological phase of matter in two spacial dimensions is encoded by a unitary modular (tensor) category (UMC). A group symmetry of the topological phase induces a group symmetry of its corresponding UMC. Gauging is a well-known theoretical tool to promote a global symmetry to a local gauge symmetry. We give a mathematical formulation of gauging in terms of higher category formalism. Roughly, given a UMC with a symmetry group $G$, gauging is a 2-step process: first extend the UMC to a $G$-crossed braided fusion category and then take the equivariantization of the resulting category. Gauging can tell whether or not two enriched topological phases of matter are different, and also provides a way to construct new UMCs out of old ones. We derive a formula for the $H^4$-obstruction, prove some properties of gauging, and carry out gauging for two concrete examples.
Final version. To appear in CMP (without the appendix)
Mathematics - Quantum Algebra, FOS: Mathematics, Monoidal categories, symmetric monoidal categories, Quantum Algebra (math.QA), String and superstring theories; other extended objects (e.g., branes) in quantum field theory
Mathematics - Quantum Algebra, FOS: Mathematics, Monoidal categories, symmetric monoidal categories, Quantum Algebra (math.QA), String and superstring theories; other extended objects (e.g., branes) in quantum field theory
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 46 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
