<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 18820901
A novel experimental approach using the rotating sample system (RSS) is proposed here for the determination of the critical micelle concentration (CMC) of surfactants. The RSS has been conceived in our laboratory as a convection platform for physicochemical studies and analyses in microliter-sized sample drops. The scheme allows for vigorous rotation of the drop despite its small size through efficient air-liquid mechanical coupling. Thus, changes in surface properties of aqueous samples result in corresponding modulation of the hydrodynamic performance of the RSS, which can be utilized to investigate interfacial phenomena. In this work, we demonstrate that the RSS can be used to study the effects of surfactants on the surface and in the bulk of very small samples with hydrodynamic electrochemistry. Potassium ferrocyanide is employed here with cyclic voltammetry to probe the air-water interface of solutions containing Triton X-100. The CMC of this surfactant determined using this approach is 140 ppm, which agrees well with reported values obtained with conventional methods in much larger samples. The results also demonstrate that besides the CMC, variations in bulk rheological properties can also be investigated in very small specimens using the RSS with a simple method.
Surface-Active Agents, Rotation, Octoxynol, Electrochemistry, Rheology, Micelles
Surface-Active Agents, Rotation, Octoxynol, Electrochemistry, Rheology, Micelles
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |