Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Psychopharmacologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Psychopharmacology
Article . 1997 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Discriminative stimulus properties of the nicotinic agonist cytisine

Authors: C J, Chandler; I P, Stolerman;

Discriminative stimulus properties of the nicotinic agonist cytisine

Abstract

Cytisine binds with high affinity and specificity to neuronal nicotinic receptors but its physiological and behavioural effects are complex and differ from those of nicotine. The present study explores the behavioural aspects further by comparing the discriminative stimulus effects of cystisine with those of nicotine. Two groups of rats were trained to discriminate cytisine (2 mg/kg s.c.) or nicotine (0.2 mg/kg s.c.) from saline in a two-lever operant conditioning procedure with food reinforcers presented on a tandem VI FR schedule. A third group of rats was trained to discriminate cytisine (3 mg/kg s.c.). Rats acquired these discriminations within 50 training sessions. The stimulus effects of both cytisine and nicotine appeared within 4 min of s.c. injection. In generalization tests, rats trained with either cytisine or nicotine showed steep dose-response curves (generalization gradients) for their respective training drug. However, rats trained with cytisine showed full dose-related, generalization to nicotine (93%), whereas rats trained with nicotine exhibited only partial generalization to cytisine (54%). Rats trained with either cytisine or nicotine exhibited similar, partial generalization (76-77%) to (+)-amphetamine. The nicotine antagonist mecamylamine blocked the discriminative stimulus effects of both cytisine and nicotine; it was confirmed that the block of nicotine (0.2 mg/kg) was complete, whereas the block of cytisine (2 and 3 mg/kg) was incomplete in two separate experiments. Overall, the results showed that cytisine, like nicotine, can serve as a robust discriminative stimulus but, in contrast to its relatively high affinity in binding experiments, cytisine was much less potent than nicotine in the behavioural studies. Although the stimulus effects of the two drugs were very similar, there were some subtle differences such as the asymmetrical cross-generalizations between them and possible small differences in susceptibility to antagonism by mecamylamine. These effects were interpreted either in terms of a putative partial agonist effect of cytisine, or by assuming that nicotine produces a compound stimulus. Such a stimulus would be mediated through two or more subtypes of nicotinic receptor, and cytisine would act at some, but not all, of these receptor subtypes.

Keywords

Male, Nicotine, Dose-Response Relationship, Drug, Nicotinic Antagonists, Azocines, Rats, Discrimination Learning, Amphetamine, Alkaloids, Generalization, Stimulus, Animals, Nicotinic Agonists, Drug Antagonism, Quinolizines

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!