
A singular foliation in the sense of Androulidakis and Skandalis is an involutive and locally finitely generated module of compactly supported vector fields on a manifold. An automorphism of a singular foliation is a diffeomorphism that preserves the module. In this note, we give an alternative proof of the (surprisingly non-trivial) fundamental fact that the time-one flow of an element of a singular foliation (i.e. its exponential) is an automorphism of the singular foliation.
5 pages, minor changes in second version
Mathematics - Differential Geometry, Differential Geometry (math.DG), FOS: Mathematics
Mathematics - Differential Geometry, Differential Geometry (math.DG), FOS: Mathematics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
