Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Urogyn...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Urogynecology Journal
Article . 2006 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biology of polypropylene/polyglactin 910 grafts

Authors: Thomas A, Barbolt;

Biology of polypropylene/polyglactin 910 grafts

Abstract

The biological evaluation of polypropylene (PP)/polyglactin 910 grafts was reviewed including regulatory considerations, biocompatibility assessment, tissue reaction and integration, and infection potentiation of these synthetic materials used in urogynecological surgical procedures. The physical characteristics of the grafts including base composition, monofilament vs multifilament, and non-absorbable vs absorbable materials were compared. Grafts were implanted in rats to evaluate the tissue reaction and integration characteristics of the materials over time. Grafts were also implanted in mice and inoculated with Staphylococcus aureus to assess the potential for bacterial attachment and growth. The tissue reaction to PP/polyglactin 910 grafts was characterized by minimal to mild inflammation with some qualitative differences related to the physical construction of the different grafts. The tissue reaction to polyglactin 910 mesh was also mild but resolved after the material was absorbed 70 days post-implantation. The integration of PP/polyglactin 910 grafts by fibrosis with surrounding tissue was initially mild for all materials but decreased over time for the lightweight and multifilament PP-based grafts, including a graft with an absorbable polyglactin 910 component. Residual fibrosis was not observed for the graft constructed from polyglactin 910 alone. Grafts constructed from PP did not potentiate infection after inoculation with S. aureus whereas the number of bacteria recovered from naturally derived collagen-based materials increased by three to four logs. The biological performance of PP/polyglactin 910 grafts is dependent on multiple factors including the composition and physical construction of the base materials, the overall biocompatibility of the materials, particularly tissue reaction and integration of the grafts, and the resistance of the grafts to bacterial attachment and growth.

Related Organizations
Keywords

Graft Survival, Animals, Humans, Biocompatible Materials, Prostheses and Implants, Polypropylenes, Polyglactin 910

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!