<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Bulletproofs (Bünz et al., in: 2018 IEEE symposium on security and privacy, IEEE Computer Society Press, pp 315–334, 2018) are a celebrated ZK proof system that allows for short and efficient proofs, and have been implemented and deployed in several real-world systems. In practice, they are most often implemented in their non-interactive version obtained using the Fiat–Shamir transform. A security proof for this setting is necessary for ruling out malleability attacks. These attacks can lead to very severe vulnerabilities, as they allow an adversary to forge proofs re-using or modifying parts of the proofs provided by the honest parties. An earlier version of this work (Ganesh et al., in: EUROCRYPT 2022, Part II. LNCS, vol 13276, Springer, Cham, pp 397–426, 2022) provided evidence for non-malleability of Fiat–Shamir Bulletproofs. This was done by proving simulation-extractability, which implies non-malleability, in the algebraic group model. In this work, we generalize the former result and prove simulation-extractability in the programmable random oracle model, removing the need for the algebraic group model. Along the way, we establish a generic chain of reductions for Fiat–Shamir-transformed multi-round public-coin proofs to be simulation-extractable in the (programmable) random oracle model, which may be of independent interest.
Bulletproofs, Non-interactive zero knowledge proof, Random oracle model, Simulation-extractability, Computer Science & Automation, 004, Non-malleability
Bulletproofs, Non-interactive zero knowledge proof, Random oracle model, Simulation-extractability, Computer Science & Automation, 004, Non-malleability
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |