Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://link.springe...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://link.springer.com/cont...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cryptology
Article . 2016 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2014 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2014
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Secret-Sharing for NP

Authors: Moni Naor; Eylon Yogev; Ilan Komargodski;
Abstract

A computational secret-sharing scheme is a method that enables a dealer, that has a secret, to distribute this secret among a set of parties such that a "qualified" subset of parties can efficiently reconstruct the secret while any "unqualified" subset of parties cannot efficiently learn anything about the secret. The collection of "qualified" subsets is defined by a Boolean function. It has been a major open problem to understand which (monotone) functions can be realized by a computational secret-sharing schemes. Yao suggested a method for secret-sharing for any function that has a polynomial-size monotone circuit (a class which is strictly smaller than the class of monotone functions in P). Around 1990 Rudich raised the possibility of obtaining secret-sharing for all monotone functions in NP: In order to reconstruct the secret a set of parties must be "qualified" and provide a witness attesting to this fact. Recently, Garg et al. (STOC 2013) put forward the concept of witness encryption, where the goal is to encrypt a message relative to a statement "x in L" for a language L in NP such that anyone holding a witness to the statement can decrypt the message, however, if x is not in L, then it is computationally hard to decrypt. Garg et al. showed how to construct several cryptographic primitives from witness encryption and gave a candidate construction. One can show that computational secret-sharing implies witness encryption for the same language. Our main result is the converse: we give a construction of a computational secret-sharing scheme for any monotone function in NP assuming witness encryption for NP and one-way functions. As a consequence we get a completeness theorem for secret-sharing: computational secret-sharing scheme for any single monotone NP-complete function implies a computational secret-sharing scheme for every monotone function in NP.

Keywords

FOS: Computer and information sciences, Computer Science - Cryptography and Security, Cryptography and Security (cs.CR)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 10%
Green
bronze