<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We propose constructing provable collision resistant hash functions from expander graphs in which finding cycles is hard. As examples, we investigate two specific families of optimal expander graphs for provable collision resistant hash function constructions: the families of Ramanujan graphs constructed by Lubotzky-Phillips-Sarnak and Pizer respectively. When the hash function is constructed from one of Pizers Ramanujan graphs, (the set of supersingular elliptic curves over with l-isogenies, l a prime different from p), then collision resistance follows from hardness of computing isogenies between supersingular elliptic curves. For the LPS graphs, the underlying hard problem is a representation problem in group theory. Constructing our hash functions from optimal expander graphs implies that the outputs closely approximate the uniform distribution. This property is useful for arguing that the output is indistinguishable from random sequences of bits. We estimate the cost per bit to compute these hash functions, and we implement our hash function for several members of the Pizer and LPS graph families and give actual timings.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 253 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |