
We study a phenomenon occuring in various areas of quantum physics, in which an observable density (such as an energy density) which is classically pointwise nonnegative may assume arbitrarily negative expectation values after quantisation, even though the spatially integrated density remains nonnegative. Two prominent examples which have previously been studied are the energy density (in quantum field theory) and the probability flux of rightwards-moving particles (in quantum mechanics). However, in the quantum field context, it has been shown that the magnitude and space-time extension of negative energy densities are not arbitrary, but restricted by relations which have come to be known as `quantum inequalities'. In the present work, we explore the extent to which such quantum inequalities hold for typical quantum mechanical systems. We derive quantum inequalities of two types. The first are `kinematical' quantum inequalities where spatially averaged densities are shown to be bounded below. Such quantum inequalities are directly related to Garding inequalities. The second type are `dynamical' quantum inequalities where one obtains bounds from below on temporally averaged densities. We derive such quantum inequalities in the case of the energy density in general quantum mechanical systems having suitable decay properties on the negative spectral axis of the total energy. Furthermore, we obtain explicit numerical values for the quantum inequalities on the one-dimensional current density, using various spatial averaging weight functions. We also improve the numerical value of the related `backflow constant' previously investigated by Bracken and Melloy. In many cases our numerical results are controlled by rigorous error estimates.
28 pages, 2 figures
Quantum Physics, quantum inequalities, FOS: Physical sciences, Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics, General quantum mechanics and problems of quantization, Mathematical Physics (math-ph), Weyl-Wigner quantization, Quantum Physics (quant-ph), Mathematical Physics, PDEs in connection with quantum mechanics
Quantum Physics, quantum inequalities, FOS: Physical sciences, Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics, General quantum mechanics and problems of quantization, Mathematical Physics (math-ph), Weyl-Wigner quantization, Quantum Physics (quant-ph), Mathematical Physics, PDEs in connection with quantum mechanics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 41 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
