Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Spine Journ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Spine Journal
Article . 2000 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cages: designs and concepts

Authors: Max Aebi; Thomas Steffen; Irmgard Fruth; Anthony Tsantrizos;

Cages: designs and concepts

Abstract

Many new interbody fusion cages have been recently developed, but clinical studies analyzing fusion outcome are still scarce. Radiological methods to assess fusion are not standardized and are often unreliable. Cages have been stated to provide good segmental distraction, provide axial load support and reduce segmental mobility, but there have been reports of failed fusions because of implant failure. This paper presents a critical opinion on current cage designs, stressing their clinical and biomechanical implications. Threaded cage designs compromise endplate integrity, and when placed in pairs have inherent limitations for distraction. Non-threaded cage designs usually preserve endplate integrity, but geometry may be inadequate to provide a good surface match to the endplate. The concept of an open frame type cage is believed to have biological advantages, because large graft volumes inside the cage can be in direct contact with host bone. Cadaveric tests suggest that open frame constructs have compressive strength similar to that of full surface contact cages. Restoration of segmental height, sagittal balance and increased neuroforaminal clearance are all functions of disc space distraction. The effect of cage instrumentation on axial load distribution, however, is not well understood. Biomechanical experiments strongly suggest supplementing cage instrumentation with posterior fixation, to achieve a marked increase in initial segmental stability. In the absence of gross segmental instability, micromotion at the host graft interface may still exist. As a result, fusion will never occur, instead a pseudoarthrosis will develop. For monitoring fusion, the use of non-metallic cages has distinct advantages, because no metal artifacts will disturb radiological assessment.

Related Organizations
Keywords

Spinal Fusion, Humans, Equipment Design, Orthopedic Fixation Devices

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    101
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
101
Top 10%
Top 10%
Top 10%
bronze