
doi: 10.1007/pl00008098
pmid: 11540318
Unicellular tip-growing cells are excellent experimental systems in which to study gravitropism because cell extension, gravity sensing and the gravity response are all confined to the apical dome. Thus various approaches can be used to determine the distinct steps of the short gravitropic signal-transduction chain, which lacks a signal-transmission phase between the gravity-sensing cells and the competent responding target cells. Single-cell systems readily allow in-vivo observation of cellular processes during gravistimulation at 1 g, centrifugation, clinostatting and in microgravity, as well as permitting fluorescence labeling. Such diverse studies have revealed fascinating information on the mechanism of gravitropic tip growth, especially on the important role of the cytoskeleton in the positioning of the statoliths and in organizing and adjusting the Spitzenkorper. A hypothesis explaining the negative and positive gravitropism of Chara rhizoids and Chara protonemata has been put forward, which emphasizes the role of the actin cytoskeleton in the process of gravitropic tip-growth. Differences in the gravitropic responses of single-cell systems, however, reflect a diversity of gravitropic mechanisms, and represent an example of parallel evolution.
Weightlessness, Space Flight, Cytochalasins, Microtubules, Bryopsida, Gravitropism, Plant Root Cap, Chlorophyta, Plastids, Cytoskeleton, Signal Transduction
Weightlessness, Space Flight, Cytochalasins, Microtubules, Bryopsida, Gravitropism, Plant Root Cap, Chlorophyta, Plastids, Cytoskeleton, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 48 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
