Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Microbiologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Microbiology
Article . 1999 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

DNA Extraction from Activated Sludges

Authors: M, Bourrain; W, Achouak; V, Urbain; T, Heulin;

DNA Extraction from Activated Sludges

Abstract

To optimize the cell lysis step for DNA extraction from activated sludge samples, two floc dispersion methods (sonication versus stirring with a cation exchange resin), and three cell lysis treatments (lysozyme + SDS, sonication in a water bath, and thermal shock) were tested. For dispersion, stirring with cation exchange resin was more efficient than sonication. The cell lysis procedures were applied in two sequences, and DNA was quantified after each cell lysis treatment. Lysozyme + SDS was the most effective step in the cell lysis procedures. The cell lysis treatment sequences giving the highest DNA yields were not the same for all the sludges. The differences in sludge microbial compositions and floc structures required specifically adapted cell lysis protocols. The proposed protocols were highly efficient for DNA extraction, yielding about 50 mg DNA g-1 volatile suspended solids, and allowed PCR amplification of 16S rDNA.

Keywords

DNA, Bacterial, Bacteria, Sewage, Genes, rRNA, Polymerase Chain Reaction, Sonication, Bacteriolysis, RNA, Ribosomal, 16S, Muramidase

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!